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In modern heat exchangers, pipes, and capillaries there occurs motion of liquid which 
contains bubbles of dissolved gases or vapor of different size. The forced motion of fluid 
(pumping) is produced either by creating a pressure difference at the ends of the pipe or 
with the help of pumps. In the first case it is said that the flow occurs with a given pres- 
sure drop (the flow rate is unknown and is a paremeter to be determined) while in the second 
case the flow occurs with a given flow rate (the pressure drop must be found by solving the 
problem). From the mathematical standpoint, these two formulations are, as a rule, equiva- 
lent in the sense that if the problem with the fixed flow rate has been solved, then the pre- 
sure drop can be calculated, and if the problem with the determined pressure drop is solved, 
then the starting flow rate is obtained [I]. 

The theoretical investigation of the local characteristics of a liquid moving in a pipe 
with gas bubbles rising upward presents significant difficulties owing to the fact that the 
flow has a free surface which is not known beforehand and which must be determined together 
with the flow functions. There are very few experimental data [2-4] and they give only a 
qualitative idea of the process. Since the problem contains more than three independent in- 
put parameters, the results of the experiments cannot be generalized at the present time. 
Probably only a numerical solution of the Navier-Stokes equations will make it possible to 
give a complete picture of flow near a deformable bubble. An algorithm for solving numeri- 
cally the complete Naver-Stokes equations describing the rising of a gas bubble in a vertical 
pipe filled with a fluid at rest is given in [5]. Analysis of the solutions obtained and a 
map of the flow regimes for a wide range of input parameters are given in [6]. In this paper 
the results of calculations of stationary rising of a bubble in a liquid in which far from 
from the bubble the velocity profile over the cross section of the pipe is parabolic are 
presented. 

i. Formulation of the Problem. Consider a vertical pipe filled with a viscous liquid 
moving upward. The acceleration due to gravity g is directerd downwards. If a gas bubble is intro- 
duced into the pipe, then it will rise under the action of the buoyancy force and it will be 
carried by the flow of moving liquid. If the volume, shape, and velocity of the bubble does 
not change much on some section of its path, then we regard the rising of the bubble to be 
stationary. In a coordinate system attached to the walls of the pipe, the rise velocity u 
is obviously higher than the rise velocity u0 of a bubble in a fluid at rest and depends on 
the flow rate of the pumped liquid around the bubbble and the shape of the bubble. We assume 
that far from the bubble a Poiseuille flow, characterized by one parameter, for example, the 
maximum velocity u n on the axis, is established above and below the bubble in the pipe. 

It is convenient to give the mathematical description in a coordinate system tied to 
the bubble. Then the bubble is at rest and the walls of the pipe and the liquid move down- 
ward (Fig.l). In a spherical coordinate system (r, 8,'~) whose origin 0 lies at the "center 
of the bubble" the motion of the liquid is descrbed by the Navier-Stokes equations, and owing 
to the axial symmetry, in the terms the stream function ~ - the vorticity m assumes the form 

[6] 
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Fig. 1 

We prescribe the boundary conditions as follows: a) on the surface of the bubble F(r = R(@), 
e e [0,~]) we impose the condition of impenetrability, the tangential stresses are equal to 
zero, and the difference of the normal stresses is equal to the capillary forces: 

kO(r, O) = O; ( 1 . 3 )  

R ~+2R '2 -RR" *~ = 0 ;  ( 1 . 4 )  
(0 + - / { 2 _ ~ R , 2  r 2S inO 

[ R] - - p ( r ,  0) +2pv  * ~ 1 7 6  p g +  r2sin0 --~-~o = - -  OK ( 1 . 5 )  

[K = R2+ 2R'2-- BB" IR'cos0 -- Bsin01 
(R2+R,~)3/2 + Rsin0(R2+B,2)i/2 is the curvature F, v is the coefficient of kinematic 

viscosity, o is the surface tension, p = q - pgrcos0 + p~ (p= = p(r = Rp, 0 = ~/2)) is the 
pressure in the liquid, q is the generalized pressure, p is the pressure of the gas in the 
bubble (assumed to be constant), and p is the density o~ the fluid]; 

b) on the pipe walls (r = G(8~, 0 ~ [0", ~ - 6"], 8" = arctan(Rp/~), Rp is the radius 
of the pipe, and 2~ is the length of the selected section of the moving pipe) we impose the 
no-slip and impenetrability conditions: 

t o ,  cos O or 
7 Or + r2sin0 OO = --  U; ( 1 . 6 )  

c) on the axis of the pipe (e = 0, ~) we impose the symmetry condition 

~(r ,  O) = ~(r ,  O) = O; ( 1 . 8 )  

d) at the inlet (r = FI(0), O ~ [0, 0"]) and the outlet (r = F2(0), 0 E [~ - 0", ~]) 

u un 2 �9 o ( r 2sin 20 
�9 ( r , O ) = - - T r 2 s i n 2 0 + - ~ - r  s in -0 . 1  ~ ); ( 1 . 9 )  

(r, 0) = u ~  sin 0 /R~ ( 1.  !0  ) 

Equations (1.7), (1.9), and (i. I0) contain terms which are associated with the Poiseuille 
flow in the pipe. Thus, if the fluid is not pumped (u n = 0), we have the conditions [6] cor- 
responding to undisturbed flow. If u n > 0, additional flow appears in the pipe cross sec- 
tions; this is taken into account in Eq. (1.7). At the inlet and outlet of the pipe we pre- 
scribe a Poiseuille parabola: V(y) = un(l - y2/Rp2) (y is the coordinate measured across 
the pipe). Then the radial component of the velocity is 
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or 8~/88i = Un r2sinScosS(1 -- r =sin2 8/RD2). Integrating over 0 with r = const we obtain 
~(r, 5) =un[(r2sin=8)/2][l -- (r2sin28)/2Rp2]. Substituting now ~(r, 5) into Eq. (i.i) we 
calculate m(r, 0) at the inlet and outlet of the pipe (i.i0). The parameter u n is an inde- 
pendent parameter and determines the flow rate of the liquid pumped through the cross sec- 
tion of the pipe. For large values of Rp and a small bubble the rise velocity of the bubble 
is equal to the sum of the rise velocity in the fluid at rest u0 and u n. As the pipe diame- 
ter decreases u will now be determined by the entire flow pattern. 

2. Dimensional Analysis and Method of Solution. The problem (i.i)-(i.i0) contains 
the following dimensional imput parameters: p, v, o, g, pg - p~, Rp, and u n. The size, 
shape, and rise velocity of the bubble and the flow functions are found by solving Eqs. 
(i.i)-(i.i0). According to the theory of dimensional analysis, the problem (i.i)-(i.i0) has 
four dimensionless independent combinations. If a (the radius of a sphere with an in equiv- 
alent volume) and u are taken as the characteristic size and velocity and the equations are 
made dimensionless [5], then the equations of motion and the boundary conditions will con- 
tain the following parameters: the Reynolds number Re = u2a/v, Weber's number We = pu22a/o, 
Froude's number Fr = u2/ga, and pressure difference Pd = (Pg - P~)/P u2, the pumping velocity 
W = Un/U, and I = a/Rp, which characterizes the geometry of the flow region. Four of the six 
indicated dimensionless combinations must be independent. If Re and We are assumed to be 
given, then Fr and Pd cannot be prescribed beforehand and they must be determined together 
with the flow functions, for example, as done in [6]. 

The problem (i.i)-(i.i0) differs from the problem solved in [6] in that the conditions 
(1.7), (1.9), and (i.i0), which prescribe the flow rate of the liquid, are different and the 
flow at the inlet and outlet of the pipe is a Poiseuille flow instead of a uniform flow. 
For this reason, the method of solution and algorithm will be analogous. The problem is 
solved for each value of X, fixed W, and different values of Re and We. Then by changing W 
we can obtain an extremely large amount of information about the flows. The existence of 
four independent dimensionless parameters makes it virtually impossible to investigate com- 
pletely the problem formulated. For this reason, in this work we shall confine our atten- 
tion to the most interesting and important case, when the bubble size is comparable to the 
pipe size. Indeed, if we have a growing vapor bubble, which is rising in the pipe, then as 
long as the bubble is small no significant features appear in the flow. But when the bubble 
starts to occupy a large fraction of the cross section of the pipe, then the deformation of 
the surface brings about a substantial decrease of the rise velocity of the bubble [6]. 
Thus, for I = 0.8 and 0.98 calculations were performed for W = 0.5 and I. With the help of 
the data in [6] (corresponding to W = 0) the characteristic flow features owing to the pumped 
liquid can be determined. The analysis is performed and the results a~e represented bYlg~ 
structing diagrams of isolines of Fr in the coordinates R o =a/(o/pg)112, Rv = a/(v2/g) 
[6]; the basic types of flows are indicated in these diagrams. In the coordinates employed 
here each liquid is represented by the straight line whose slope is determined by Morton's 
number M =:g~4p3/o3 = (Ro/Rv) 6 Thus, by constructing the lines Fr = const in these coor- 
dinates we have complete information about the flow: The rise velocity of the bubble and 
the flow rate of the pumped liquid, which are easily calculated from Fr and W for a bubble 
a fixed size a in a specific liquid. 

3. Strong Effect of the Walls (I = 0.8). We performed a series of calculations for 
W = 0.5 and different values of Re and We. Even when the bubble is located at a distance of 
1-1.5 units from the pipe the fluid flow is the same and differs little from the flow pre- 
scribed at the inlet and outlet. The flow is stratified with the velocity oriented parallel 
to the axis of the pipe, except in the region directly adjacent to the bubble. As the liq- 
uid flows past the bubble, behind the bubble a current forms along the axis of the pipe 
and the liquid slows down at the walls ofthe pipe. However, these processes are not as pro- 
nounced as in the case W = 0 [6]. For example, for Re = i00, We = 0.166, R o = 0.35, R v = 
15.4, and M - 10 -I~ the structure of the flow is the same as in Fig. 7a in [6] for Re = 0.4. 
For smaller values of Re the character of the flow is the same, but with a weaker stagnation 
zone and stream; for Re = 4 there are virtually no stream and no stagnation zone. Behind 
the bubble, and in the expanding part of the flow, there is a fan of velocities in the cross 
section of the pipe; the minimum (nonzero) velocity occurs on the surface of the bubble. 
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Fig. 2 Fig. 3 

As We increases with fixed Re the bubble is flattened and the gap between the walls and the 
pipe decreases. In addition, the velocity distribution near the bubble is even more uniform. 
Figure 2 shows the distribution of vorticity m on the wall of the pipe, when Re, We, and M 
are equal to, respectively, 4, 0.05, and 2.6.10 -s for the line i, 40, 0.34, and 2.4.10 -7 for 
the line 2, and i00, 0.166, and -10 -I~ for the line 3. In the region in front of the bubble 
m decreases sharply, indicating that here the liquid accelerates. Immediately behind the 
narrow part of the gap ~ increases, becomes positive, and then reaches a constant value, cor- 
responding to the Poiseuille flow. Since the friction on the pipe wall T = (2/Re)~, the 
losses associated with the passage of the bubble can be determined. Comparing the plots in 
Fig. 2 shows that the peak of vorticity ~ is highest for the curve 2. This is explained by 
the fact that the curves 1 and 3 correspond to virtually spherical bubbles with the same dis- 
tance between the bubble and the pipe wall in the narrow gap. Curve 2 corresponds to a flat- 
tened bubble, when the gap has significantly decreased. Since the flow rate in the pipe is 
fixed, this leads to higher fluid velocity in the gap and therefore sharply reduced vorticity 
m. Comparing the computed values of Fr at the corresponding points of the diagram in Fig. 6 
from [6] shows that in the region of spherical bubbles Fr increased approximately by a factor 
of 2.5, while in the region of deformed bubbles it increased by less than a factor of two. 
Since Fr = u2/ga, forming the ratio of the Froude numbers and taking its square root we ob- 
tain an esimate of the increase in u as compared with the process in a fluid at rest. In 
the case at hand weakly deformed bubbles rise /2.5 times faster than in a fluid at rest. 
The rise velocity for deformed bubbles is somewhat lower than the sum of the rise velocities 
in a fluid at rest and the average flow rate at the inlet. For spherical bubbles a linear 
dependence Fr = kiRe (k i = 0.0095) is observed. 

As the amount of liquid pumped through the pipe increases the structure of the entire 
flow changes substantially and becomes increasingly less like the pattern observed with a 
bubble rising in a fluid at rest. The bubble begins to act like a piston, pushing the liq- 
uid. Figure 3 shows the flow for Re = 40, We = 0.96, M = 2.38.10 -6 , R o = 1.22, R v = ii.i, 
W = i. Behind (and in front of) the bubble there forms on the axis of the pipe a structure 
corresponding to the flow behind a piston. For large values of Re the structure does not 
touch the bubble. This is a result of the virtually vanishing stream of liquid behind the 
bubble, as one can see from Fig. 7 in [6]. The vorticity ~ and friction ~ at the pipe wall 
are of the same character as that shown in Fig. 2. The absolute magnitude of the negative 
peaks decreased by approximately a factor of two. Calculations for other values of Re and We 
give a flow pattern that differs from Fig. 3 near the bubble. Figure 4 shows the isolines 
Fr = const in the coordinate Ro, R~. Their behavior is analogous to the case of a bubble 
rising in a liquid at rest [6]. The region I of spherical bubbles (left-hand side, bounded 
by the solid broken line) practically coincides with the region II of deformed bubbles. To 
the right of the dashed line deformation occurs by stretching along the axis of the pipe 
with an increasing gap between the bubble and the pipe walls. The stagnation zone at the 
pipe wall behind the bubble has almost vanished. The rise velocity is higher. Comparing 
the values of Fr at the corresponding points of the diagrams Figs. 4 and 6 from [6] shows 
that in the region I their ratio =10-13 while in region II =5-7. Thus, spherical bubbles 
rise approximately 3.5 times faster than in a fluid at rest, while deformed bubbles rise 
more than two times faster. Taking into account the flow rate of the pumped liquid, we can 
conclude that for spherical bubbles u is larger than the sum of the rise velocity u 0 in the 
fluid at rest and the average flow velocity u a. Indeed, u = 3.5 u 0. Since W = i, in dimen- 
sional form u n = u and u a = Un/2 = 1.75 u 0. Then u 0 + U a = 2.75 u 0 < u. For deformed bub- 
bles u is approximately equal to (somewhat larger than) u a + u 0. In the region of spherical 
bubbles Fr = k2Re (k 2 = 0.0244). 
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4.  S l u g  Flow Regime ( t  = 0 . 9 8 ) .  The t e r m  S lug  h e r e  d i f f e r s  f r o m  t h e  s t a n d a r d  s l u g  r e -  
g ime ,  when t h e  r i s e  v e l o c i t y  o f  a b u b b l e  no l o n g e r  depends  on i t s  vo lume  f o r  a p i p e  o f  t h e  
i n d i c a t e d  r a d i u s .  As f o l l o w s  f rom t h e  d i a g r a m  in  [ 6 ] ,  in  c a p i l l a r y  t u b e s  (whose r a d i u s  i s  
l e s s  t h a n  t h e  c a p i l l a r y  c o n s t a n t  ~o = ( e / P g ) 1 / 2 )  in  a g i v e n  l i q u i d  t h e  d e p e n d e n c e  o f  t h e  
r i s e  v e l o c i t y  o f  a b u b b l e  on t h e  b u b b l e  vo lume  i s  n o n m o n o t o n i c  and as  t h e  e q u i v a l e n t  r a d i u s  
d a p p r o a c h e s  t h e  p i p e  r a d i u s  t h e  r i s e  v e l o c i t y  d e c r e a s e s  s t r o n g l y .  T h i s  i s  e x p l a i n e d  by t h e  
f a c t  t h a t  i n  such  p i p e s  t h e  s u r f a c e  t e n s i o n  o f  a b u b b l e  i s  l a r g e  and p r e d o m i n a t e s  o v e r  t h e  
i n e r t i a l  and v i s c o u s  f o r c e s .  The b u b b l e  becomes " r i g i d , "  r e m a i n i n g  v i r t u a l l y  u n d e f o r m e d  
and s p h e r i c a l .  As t h e  vo lume  o f  t h e  b u b b l e  i n c r e a s e s ,  t h e  b u b b l e  p l u g s  up t h e  c a p i l l a r y .  
I n  p i p e s  whose r a d i u s  Rp i s  g r e a t e r  t h a n  ~o, as  a a p p r o a c h e s  Rp t h e  i n e r t i a l  f o r c e s  become 
c o m p a r a b l e  t o  t h e  s u r f a c e  t e n s i o n  f o r c e ,  and b u b b l e  i s  d e f o r m e g  a l o n g  t h e  a x i s  o f  t h e  p i p e ,  
and the rise velocity of the bubble increases. The presence of upward flow should result 
in an increase of the rise velocity, whose magnitude will be determined by the shape of the 
bubble. The flow pattern for W = 0.5, Re = 100, We = 0.0008, M ~ 10 -12 is reminiscent of 
the structure with W = 0 and Re = 60 [6]. Here, however, at the pipe wall behind the bubble 
there is a stagnation zone without closed stream lines. As We increases the bubble at first 
becomes flattened, in spite of the small gap, and then (for R o > 0.8) it stretches out along 
the axis of the pipe and the gap between the pipe and bubble walls increases. For smaller 
values of Re the flow pattern is on the whole analogous, but the stream behind the bubble 
and the stagnation zone at the wall are less pronounced. The regions of characteristic types 
of flows arise, as in [6], and are virtually identical to the diagram for X = 0.98. The 

rise velocity of the bubble is approximately 1.2 times higher than in the case W = 0. This 
means that u = 1.2 u0. Since u a = Un/2 = 2/4, we have u0 + u a = u0 + 0.3 u0 > u. Thus, for 
W = 0.5 the bubbles rise with a velocity higher than u 0 but less than u a + u 0. In the region 

of spherical bubbles Fr = k3Re (k 3 = 0.000035). 

As the flow rate of the liquid pumped through the pipe increases the structure of the 
flow changes. Figure 5 shows the pattern for W = i, Re = I00, We = 0.0014, M ~ i0 -13, R o = 
0.42, R v = 85. The stream behind the bubble and the stagnation zone at the wall are very 
insignificant. On the axis of the pipe at some distance from the bubble there forms a struc- 
ture corresponding to the fluid flow behind a piston. For smaller values of Re the zero 
stream line is closed on the bubble. Figure 6 shows plots of the vorticity ~ at the pipe �9 
wall for W = 1 for the case when Re, We, M, R a, and R~ take on the following values, respec- 
tively: for the line i) 4, 0.0016, 4.6.10 -s, 1.07, 17.8; for the line 2) 40, 0.0054, -i0 -11, 
0.93, and 50.1; for the line 3) i00, 0.0014, -10 -13 , 0.42, and 85. The negative peaks 

of m are approximately two times smaller than those with the corresponding values of the parameters 
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for W = 0.5. The regions of the characteristic types of flows and isolines of Fr are shown 
in Fig. 7. On the whole their behavior is analogous to the case W = 0. The vertical 
lines showing regions with a definite type of deformation have shifted somewhat to the left. 
In the region of spherical bubbles there is a linear dependence Fr = k4Re (k4 = 0.000055). 
The values of Fr at the corresponding points of Fig. 7 and Fig. 9 in [6] increased approxi- 
mately by a factor of three for large values of Re (where the lines Fr = const are nonmono- 
tonic) and by a factor of 5-6 for small values of Re (R v < 5). For large values of Re the 
rise velocity of the bubbles is somewhat lower than u 0 + u a. In the region oE spherical 
bubbles, where the gap between the pipe and bubble walls increases, u is somewhat higher 
than u 0 + u a. A more accurate estimate can be obtained by comparison the diagrams for 
different values of W. 

5. Discussion. The computational results presented in this paper carry detailed in- 
formation about the structure of the fluid flows around a bubble moving in a vertical pipe 
and they correspond to the case when the walls determine the formation of the wake. This 
follows from the fact that the flows are virtually identical already at a distance of 1-1.5 
units from the pipe wall. The diagrams constructed for the flow regimes make it possible 
to calculate the rise velocity of the bubble, the flow rate of the pumped liquid for a pipe 
with a given radius, and correspondingly (I is fixed) the size of the bubble. It is also 
easy to trace the general behavioral features associated with an increase of the flow rate 
of the fluid pumped through the pipe. Since the diagrams and the lines Fr = const have the 
same structure as in the case of a bubble rising in a fluid at rest [6], the dependence of 
the rise velocity of the bubble on a will have a local maximum and as the value of ~ ap- 
proaches Rp it is determined by the sum u 0 + u a. For capillary tubes R~ < 60 = (o/pg) I/2, 
since I is close to unity, the bubbles are virtually at rest, and the rlse velocity of the 
bubbles is dictated by the average flow velocity. Under these conditions the bubble acts 
like a piston. In calculations with W = 1.5 (I = 0.8) even for spherical bubbles the re- 
sultant of the forces acting on a bubble is directed upward - the bubble rises in a nonsta- 
tionary manner. 

We present another comparison, characterizing the effect of the liquid pumped through 
the pipe on the flow in a pipe with a fixed radius as a bubble of fixed size rises in the. 
pipe. We take in the diagram the point with the coordinates R o = 0.4 and R v = 8; this point 
corresponds to a liquid with M = 1.65.10 -8 For I = 0.8, in the case of a bubble rising in 
a pipe with a fluid at rest (W = 0) Fro = 0.076 [6] (Re = 13). For W = 1 we have Frl = 0.77 
(Re = 40). In both cases the bubble is approximately identically deformed and the ratio of 
the transverse and longitudinal dimensions as X = 1.03. We shall compare the dimensional 
values of m (and the friction r) on the pipe wall. When W = 0, everywhere outside the site 
of the bubble m is small and far away from the bubble m is equal to zero. In the region of 
a narrow gap there is a sharp spike in m, whose maximum modulus in dimensionless form is 
m0 = 1.6. For W = 1 outside the site of the bubble the vorticity ~ assumes a positive con- 
stant value, corresponding to a Poiseuille flow, while in the region of a narrow gap the 
spike in m has the modulus m I = 0.47. Since the equations were made dimensionless with re- 
spect to the rise velocity of the bubble, which has a different value in each case, we ob- 
tain the ratio of the dimensional values of ~' at the point where they are highest in modulus 

* 

% ~, ~ 0.47 I/F77,_ 
V p7-0"95<I"- 0 Thus, the peak of the vorticity ~ (and hence the peak of 

~OuO 1.6  
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also) does not decrease for bubbles which are only slightly deformed if the bubble rises 
in an upward flow. In the region of deformed bubbles (R o = i, R~ = i0, for W = 0 the degree 
of deformation X = 1.17 and is somewhat higher for W = i) the analogous ratio is ~1'/w0' = 
i.i. The presence of an upward flow results in an increase of the peak friction in the nar- 
row gap between the bubble and the pipe wall. Comparisons of calculations for X = 0.98 give 
the same relations for m' in regions of spherical and deformed bubbles. 

The rise velocity is u = (gaFr) 1/2. Since R o = a/6 o = 0.4, then a = 0.4 ~o" The cap- 
illary constant for most liquids 6o~ = 0.3 cm, and substituting it into the formula for u we 

obtain u = 3 cm/sec. For a deformed bubble R o = i, and hence a = 0.3 cm and u = 10.2 cm/sec 
(Fr = 0.36). The average flow velocity of the pumped liquid is equal to, respectively, 1.5 
and 5.1 cm/sec, and the diameter of the pipe is equal to 3 mm and 7.5 mm in the first and 
second cases, respectively. In order to determine the characteristics of the flow of a giv- 
en liquid moving in a pipe with a given radius and a fixed flow rate as the bubble size in- 
creases, we can obtain no more than two points from the computational results presented. 
This is because in the method employed for making the equations dimensionless the specific 
liquid for which results have been obtained can be indicated only if the parameters Re, We, 
and Fr are known. Since one of them (Fr) is to be determined, the values cannot be obtained 
for a predetermined liquid. For this purpose, it is necessary either to use an algorithm 
developed previously based on the algorithm employed here [7] for solving the problem of a 
bubble rising in a specific liquid or more detailed calculations must be performed for the 
parameters W, X, Re, and We and the values for the liquid of interest must be found by in- 
terpolation. 

The computational results can be used for modeling flows which appear when a bubble 
rises in a submerged channel. Indeed, in a submerged channel (pipe) which is open at both 
ends and completely submerged in the liquid, as the bubble rises it pushes the liquid, so 
that the bubble rises in a liquid moving upward~ The flow rate of the liquid in the pipe 
is determined by the pushing force and the friction of the liquid against the wall. For 
very long pipes we shall have the case of a liquid at rest (W = 0). As the pipe is short- 
ened, both overflow and motion of the liquid in the pipe (flow with some W) occur. If there 
are several bubbles in the pipe, then the total buoyancy force will be large and a chain of 
bubbles can rise in a submerged pipe with a higher velocity than in the problem with a pro- 
truding end of the pipe (dead-end channel). As the calculations show, for I close to unity 
the overflow of even a small quantity of liquid through the narrow gap between the bubble 
and pipe walls gives rise to an enormous local resistance in the region of the bubble. For 
this reason, in a submerged channel liquid is forced through the channel when there are no 
sharp differentials of the friction at the wall, i.e., in the "piston regime of motion," 
realized with a definite rise velocity. According to the calculations performed, this will 
happen for W > i. An estimate of the velocity with which the liquid is pushed can be ob- 
tained from the following considerations. The flow rate of the liquid in the gap in the 
case of a bubble rising in a pipe with a protruding end is known and is equal to u0s (s is 
the central cross-sectional area of the bubble). This amount of liquid must flow through 
an annular gap, whose area is equal to s D - s (Sp is the cross-sectional area of the pipe). 
Then the average velocity of the liquid In the gap W a = u0s/(Sp - s). This is approximately 
the average flow velocity with which the liquid should move at-the inlet and outlet of the 
pipe in order for the "piston regime of flow" to be realized. For X = 0.98 we have W a = 
u0X2/(l - X 2) = 24 u 0 (spherical bubble). For I = 0.8 we obtain W a = (16/9)u 0 (u 0 can be 
determined from [6]). For smaller values of l, as one can see from Fig. 2 and [6], the 
negative friction peaks are not so large and their contribution to the total resistance of 
the liquid against the pipe wall can be small. We shall estimate W for the "piston regime 
of flow." In this case the volume of the liquid forced through the pipe us = UaSp, and 
then u a = uX 2 or W = 2X 2. For X = 0.8 we have W = 1.28. 
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THREE-DIMENSIONAL STRUCTURE OF FLOW IN A SUPERSONIC 

UNDEREXPANDED JET 

V. I. Zapryagaev and A. V. Solotchin UDC 533.6.011 

Schlieren photographs of supersonic nonisobaric jets emanating from an axisymmetric 
nozzle into a flooded space clearly show longitudinal bands, whose origin has not been ex- 
plained in the literature. Comparing the observed longitudinal bands in a jet with analo- 
gous bands arising in the case of subsonic flow past concave surfaces suggests that these 
phenomena are similar. The three-dimensional perturbations on concave surfaces consist of 
longitudinal Taylor-Goertler vortices, whose axes are parallel to the velocity vector of the 
undisturbed flow [1-6]. The vortices most likely form as a result of instability of the 
boundary layer owing to the curvature of the streamlines on the concave wall or in the re- 
gion of attachment of the detached flow. The formation of vortices causes the distribution 
of the gas-dynamic quantities on the surfaces over which the flow moves to be nonuniform 
[7, 8]. It is proposed that the alternation of dark and light colored longitudinal bands 
in the photographs of both rarefied [9, I0] and dense [11-13] jets is caused by the develop- 
ment of coherent structures of the type Tay!or-Goertler vortices in the flow. The presence 
of longitudinal vortex structures should result in nonuniformity of the distribution of gas- 
dynamic quantities in the jet. 

The experimental investigations performed in this work are concerned with the study of 
this nonuniformity in a supersonic underexpanded jet. 

The spatial nonuniformity was investigated by the method of photographing and measure- 
ment of the total and static pressures in the flow region lying between the suspended shock 
and the boundary of the jet in the so-called compressed layer [13]. For this we chose a 
supersonic axisymmetric jet whose Mach number in the outlet section of the nozzle is equal 
to M a = 1.5 in the efflux regime with underexpansion ratio n = i0. The jet flowed out of a 
conical nozzle with exit diameter d a = 1.4.10 -2 m and aperture half-angle 8 ~ . The Reynolds 
number of the jet, calculated with respect to the parameters in the outlet section of the 
nozzle, is R a - i0 ~ The jet setup is equipped with an IAB-451 optical system, with whose 
help schlieren photographs of supersonic nonisobaric jets were obtained with an exposure 
time ~ = 2.10 -2 sec. The total and static pressures were measured with the help of the cor- 
responding standard axisymmetric pressure pickups with openings 3.10 -4 m in diameter. The 
cylindrical static-pressure pickup had four openings, positioned at a distance of eight 
units from the vertex of the conical head~ In order to reduce the error of measurement the 
angle of inclination of the pickups with respect to the axis of the jet was equal to the 

Novosibirsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, -- 
No. 4, pp. 42-47, July-August, 1991. Original article submitted March 9, 1989; revision 
submitted March 23, 1990. 

0021-8944/91/3204-0503512.50 �9 1992 Plenum Publishing Corporation 503 


